‘ Triangle Centers I

Point of A Center A Circle |Equidistant from...
concurrency Name Name
of the ...
L bisectors circumcenter |circumscribed [the vertices
circle
Z bisectors incenter inscribed the sides
circle

medians centroid

altitudes orthocenter

‘ Theorem 5-6 I

The L bisectors of a A are concurrent at a point LL cicee
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Problem #1, pg 259

Problem #3, pg 259

A(0, 0), B(3, 0), C(3, 2)




‘ Theorem 5-7 I
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The £ bisectors of a A are concurrent at a point Lc. R
equidistant from the sides. : _[, .
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‘ Theorem 5-8 I

The medians of a A are concurrent at a point
that is %/; dist from each vertex L &
to the midpt of the opp side. e (0
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‘ Theorem 5-8 I

The medians of a A are concurrent at a point
that is %/5 dist from each vertex B
to the midpt of the opp side.
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‘ Theorem 5-8 I

The medians of a A are concurrent at a point
that is %/; dist from each vertex B
to the midpt of the opp side.

AD =25 ?2?
DE =1/ ??
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‘ Theorem 5-8 I

The medians of a A are concurrent at a point
that is %/5 dist from each vertex B
to the midpt of the opp side.

AD =?/3 AE _
DE ='/; AE

S~
~
~
~
-~
-~
~
~
~~
~
~
~
~
~-
-~
~

‘ Problem #11, pg 260 I

If YW=9 , find TY & TW.
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‘ Problem #23, pg 260 I
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‘ Theorem 5-9 I

The lines containing the altitudes of a A are concurrent.
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‘ L5-3 HW Problems I

Pg 259 #1-15,
19-22,
27-29,
37-39
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