## **Triangle Centers**

| Point of concurrency of the | ∆ Center<br>Name | ∆ Circle<br>Name     | Equidistant from |
|-----------------------------|------------------|----------------------|------------------|
| <b>⊥</b> bisectors          | circumcenter     | circumscribed circle | the vertices     |
| ∠ bisectors                 | incenter         | inscribed circle     | the sides        |
| medians                     | centroid         | •                    | •                |
| altitudes                   | orthocenter      | •                    | •                |

#### Theorem 5-6

The  $\bot$  bisectors of a  $\triangle$  are concurrent at a point equidistant from the vertices.

The POC for  $\triangle$   $\bot$  bisectors is the circumstant from the vertices.

Circumstant from the vertices.

1





The  $\angle$  bisectors of a  $\triangle$  are concurrent at a point equidistant from the sides.

#### Theorem 5-8

The medians of a  $\Delta$  are concurrent at a point that is  $^2/_3$  dist from each vertex

to the midpt of the opp side.

The POC for A medians is the centraid - Mo circle

The medians of a  $\triangle$  are concurrent at a point that is  $^2/_3$  dist from each vertex to the midpt of the opp side.

### Theorem 5-8

The medians of a  $\triangle$  are concurrent at a point that is  $^2/_3$  dist from each vertex to the midpt of the opp side.

The medians of a  $\triangle$  are concurrent at a point that is  $^2/_3$  dist from each vertex to the midpt of the opp side.

## Theorem 5-8

The medians of a  $\triangle$  are concurrent at a point that is  $^2/_3$  dist from each vertex between to the midpt of the opp side.



The medians of a  $\triangle$  are concurrent at a point that is  $^2/_3$  dist from each vertex to the midpt of the opp side.



# Problem #11, pg 260

If YW = 9, find TY & TW.



## Problem #23, pg 260



#### Theorem 5-9

The lines containing the altitudes of a  $\Delta$  are concurrent.

The POC For Datts is the orthocenter



# L5-3 HW Problems

```
Pg 259 #1-15,
19-22,
27-29,
37-39
```